Search results for "Squeeze theorem"

showing 5 items of 5 documents

Radó–Kneser–Choquet theorem

2014

We present a new approach to the celebrated theorem of Rado–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so-called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC-Theorem…

Pure mathematicsArzelà–Ascoli theoremFundamental theoremPicard–Lindelöf theoremGeneral MathematicsCompactness theoremta111Fixed-point theoremBrouwer fixed-point theoremSqueeze theoremMean value theoremMathematicsBulletin of the London Mathematical Society
researchProduct

Protoalgebraicity and the Deduction Theorem

2001

This chapter is intended as an introduction to the Deduction Theorem and to applications of this theorem in metalogic.

Pure mathematicsDeduction theoremFundamental theoremComputer Science::Logic in Computer ScienceCompactness theoremHeyting algebraSequent calculusFixed-point theoremGödel's completeness theoremSqueeze theoremMathematics
researchProduct

The Second Main Theorem

1998

Pure mathematicsFundamental theoremPicard–Lindelöf theoremCompactness theoremFixed-point theoremBrouwer fixed-point theoremSqueeze theoremMathematicsMean value theoremCarlson's theorem
researchProduct

Stoïlow’s theorem revisited

2020

Stoilow's theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps z -> z(k) and admit a holomorphic factorization. The purpose of this expository article is to give a proof of this classical theorem having readers in mind that are interested in continuous, open and discrete maps. (C) 2019 Elsevier GmbH. All rights reserved. Peer reviewed

continuous open and discrete mappingsPure mathematicsContinuous open and light mappingscontinuous open and light mappingsFundamental theoremPicard–Lindelöf theoremGeneral Mathematics010102 general mathematicsRamsey theoryStoilow's theorem16. Peace & justice01 natural sciencesSqueeze theoremfunktioteoriaFactorizationStoilow’s theoremFundamental theorem of calculusContinuous open and discrete mappings111 Mathematics0101 mathematicsBrouwer fixed-point theoremMathematicsCarlson's theoremExpositiones Mathematicae
researchProduct

Characteristic Functions and the Central Limit Theorem

2020

The main goal of this chapter is the central limit theorem (CLT) for sums of independent random variables (Theorem 15.37) and for independent arrays of random variables (Lindeberg–Feller theorem, Theorem 15.43). For the latter, we prove only that one of the two implications (Lindeberg’s theorem) that is of interest in the applications.

Statistics::TheoryFactor theoremPure mathematicsArzelà–Ascoli theoremPicard–Lindelöf theoremMathematical analysisDanskin's theoremBrouwer fixed-point theoremSqueeze theoremMathematicsCarlson's theoremMean value theorem
researchProduct